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Topics:


	Installation
	Docker

	Python package





	Running in Docker
	Prerequisites

	Run the Container

	Code

	Data

	I/O Buffering





	Simple Windows Instruction









Packages:


	divik package




	cluster module




	feature_selection module











Indices and tables


	Index


	Module Index








          

      

      

    

  

    
      
          
            
  
Installation


Docker

The recommended way to use this software is through
Docker [https://www.docker.com/]. This is the most convenient way, if you
want to use divik application, since it requires MATLAB Compiler Runtime
and more dependencies.

To install latest stable version use:

docker pull gmrukwa/divik





To install specific version, you can specify it in the command, e.g.:

docker pull gmrukwa/divik:2.3.5








Python package

Prerequisites for installation of base package:


	Python 3.5




These are required for using divik application and GMM-based filtering:


	MATLAB Compiler Runtime [https://www.mathworks.com/products/compiler/matlab-runtime.html], version 2016b or newer, installed to default path


	compiled package with legacy code [https://github.com/spectre-team/matlab-legacy/releases/tag/legacy-v4.0.9]




Installation process may be clearer with insight into Docker images used for
application deployment:


	python_mcr image [https://github.com/spectre-team/python_mcr] - installs MCR r2016b onto Python 3.5 image


	python_msi image [https://github.com/spectre-team/python_msi] - installs compiled legacy code onto MCR image


	divik image [https://github.com/spectre-team/spectre-divik/blob/master/dockerfile] - installs DiviK software onto legacy code image




Having prerequisites installed, one can install latest base version of the
package:

pip install divik





or any stable tagged version, e.g.:

pip install divik==2.3.5











          

      

      

    

  

    
      
          
            
  
Running in Docker


Prerequisites

First of all, you need to have Docker installed. You can proceed with the
official instructions:


	Windows [https://docs.docker.com/docker-for-windows/install/]


	Ubuntu [https://docs.docker.com/install/linux/docker-ce/ubuntu/]


	Mac [https://docs.docker.com/docker-for-mac/install/]




Under Windows and Mac you need to perform additional configuration steps before
running the analysis, since data processing requires additional resources as
compared to simple web applications.


	Right-click the running Docker icon (a whale with squares).


	Go to Preferences


	Allow Docker to run with all the CPUs and reasonable RAM (at least 16 GB, as much as possible recommended).





Note

Under Ubuntu these steps are not required as Docker runs natively.






Run the Container

The container is launched with the default Docker syntax, as described
here [https://docs.docker.com/engine/reference/run/].
You can use the following:


	under UNIX:

docker run \
    --rm -it \
    --volume $(pwd):/data \
    gmrukwa/divik \
    bash







	under Windows:

docker run^
    --rm -it^
    --volume %cd%:/data^
    gmrukwa/divik^
    bash









In both cases, the directory where the command is ran is mounted to the
\data directory in the container, so the data and / or configuration is
available (see Data). --rm indicates that the container gets removed
after it finishes running. -it indicates that the console will get attached
to the running container. gmrukwa/divik is the image name. Finally,
bash launches the shell in the container. You can launch any other
command there.




Code

Code of the installed package is available at the /app directory
in the case of need to reinstall.




Data

Your data should be mounted into the container in the /data directory.
It is assumed to be the working directory of the Python interpreter.
Please remember that all the paths should be relative to this directory
or absolute with root at /data. This is maintained by the switch
-v $(pwd):/data under UNIX or -v %cd%:/data under Windows.




I/O Buffering

Python interpreter I/O buffering is turned off by default, so all the
outputs appear immediately. Otherwise it would be impossible to track the
actual progress of the computations. You can turn this off by setting
PYTHONUNBUFFERED environment variable to FALSE.







          

      

      

    

  

    
      
          
            
  
Simple Windows Instruction

This is the simplest instruction to run DiviK on Windows.


	Install Docker (see Install)


	Create run_divik.bat with following content:




	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	@echo off
tasklist /FI "IMAGENAME eq Docker Desktop.exe" 2>NUL | find /I /N "Docker Desktop.exe">NUL
if "%ERRORLEVEL%"=="0" (
    echo Docker is running
) ELSE (
    echo Docker is not running, launching - please wait....
    start "" /B "C:\Program Files\Docker\Docker\Docker Desktop.exe"
    timeout 60 /nobreak
)
echo Checking for updates...
docker pull gmrukwa/divik
docker run^
    --rm^
    -it^
    --volume %cd%:/data^
    gmrukwa/divik^
    divik^
    --source /data/data.csv^
    --config /data/divik.json^
    --destination /data/results^
    --verbose
pause








	Put your data into data.csv


	Create divik.json starting from such template:




	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	{
  "gap_trials": 10,
  "distance_percentile": 99.0,
  "max_iter": 100,
  "distance": "correlation",
  "minimal_size": 16,
  "rejection_size": 2,
  "minimal_features_percentage": 0.01,
  "fast_kmeans_iter": 10,
  "k_max": 10,
  "normalize_rows": true,
  "use_logfilters": true,
  "n_jobs": -1,
  "random_seed": 0,
  "verbose": true
}








	Adjust the configuration to your needs





Note

Configuration follows the JSON format with fields defined as



``here <https://github.com/gmrukwa/divik/blob/master/divik/_cli/divik.md>`_.


	Double click the run_divik.bat








          

      

      

    

  

    
      
          
            
  
divik package


	
divik.seeded(wrapped_requires_seed:bool=False)

	Create seeded scope for function call.


	Parameters

	
	wrapped_requires_seed: bool, optional, default: False

	if true, passes seed parameter to the inner function














	
class divik.DivikResult(clustering, feature_selector, merged, subregions)

	
	Attributes

	
	clustering

	Alias for field number 0



	feature_selector

	Alias for field number 1



	merged

	Alias for field number 2



	subregions

	Alias for field number 3









Methods







	count()

	



	index()

	Raises ValueError if the value is not present.







	
clustering

	Alias for field number 0






	
count()

	




	
feature_selector

	Alias for field number 1






	
index()

	Raises ValueError if the value is not present.






	
merged

	Alias for field number 2






	
subregions

	Alias for field number 3










	
divik.plot(tree, with_size=False)

	Plot visualization of splits.






	
divik.reject_split(tree:Union[divik._utils.DivikResult, NoneType], rejection_size:int=0) → Union[divik._utils.DivikResult, NoneType]

	Re-apply rejection condition on known result tree.









          

      

      

    

  

    
      
          
            
  
cluster module

Clustering methods


	
class divik.cluster.AutoKMeans(max_clusters: int, min_clusters: int = 1, n_jobs: int = 1, method: str = 'dunn', distance: str = 'euclidean', init: str = 'percentile', percentile: float = 95.0, max_iter: int = 100, normalize_rows: bool = False, gap=None, verbose: bool = False)

	K-Means clustering with automated selection of number of clusters


	Parameters

	
	max_clusters: int

	The maximal number of clusters to form and score.



	min_clusters: int, default: 1

	The minimal number of clusters to form and score.



	n_jobs: int, default: 1

	The number of jobs to use for the computation. This works by computing
each of the clustering & scoring runs in parallel.



	method: {‘dunn’, ‘gap’}

	The method to select the best number of clusters.

‘dunn’ : computes score that relates dispersion inside a cluster
to distances between clusters. Never selects 1 cluster.

‘gap’ : compares dispersion of a clustering to a dispersion in
grouping of a reference uniformly distributed dataset



	distancestr, optional, default: ‘euclidean’

	Distance measure. One of the distances supported by scipy package.



	init: {‘percentile’ or ‘extreme’}

	Method for initialization, defaults to ‘percentile’:

‘percentile’ : selects initial cluster centers for k-mean
clustering starting from specified percentile of distance to
already selected clusters

‘extreme’: selects initial cluster centers for k-mean
clustering starting from the furthest points to already specified
clusters



	percentile: float, default: 95.0

	Specifies the starting percentile for ‘percentile’ initialization.
Must be within range [0.0, 100.0]. At 100.0 it is equivalent to
‘extreme’ initialization.



	max_iter: int, default: 100

	Maximum number of iterations of the k-means algorithm for a
single run.



	normalize_rows: bool, default: False

	If True, rows are translated to mean of 0.0 and scaled to norm of 1.0.



	gap: dict

	Configuration of GAP statistic in a form of dict.


	max_iter: int, default: 10

	Maximal number of iterations KMeans will do for computing
statistic.



	seed: int, default: 0

	Random seed for generating uniform data sets.



	trials: int, default: 10

	Number of data sets drawn as a reference.



	correction: bool, default: True

	If True, the correction is applied and the first feasible solution
is selected. Otherwise the globally maximal GAP is used.





Default: {‘max_iter’: 10, ‘seed’: 0, ‘trials’: 10, ‘correction’: True}



	verbose: bool, default: False

	If True, shows progress with tqdm.







	Attributes

	
	cluster_centers_: array, [n_clusters, n_features]

	Coordinates of cluster centers.



	labels_:

	Labels of each point.



	estimators_: List[KMeans]

	KMeans instances for n_clusters in range [min_clusters, max_clusters].



	scores_: array, [max_clusters - min_clusters + 1, ?]

	Array with scores for each estimator in each row.



	n_clusters_: int

	Estimated optimal number of clusters.



	best_score_: float

	Score of the optimal estimator.



	best_: KMeans

	The optimal estimator.









Methods







	fit(self, X[, y])

	Compute k-means clustering and estimate optimal number of clusters.



	fit_predict(self, X[, y])

	Performs clustering on X and returns cluster labels.



	fit_transform(self, X[, y])

	Fit to data, then transform it.



	get_params(self[, deep])

	Get parameters for this estimator.



	predict(self, X)

	Predict the closest cluster each sample in X belongs to.



	set_params(self, \*\*params)

	Set the parameters of this estimator.



	transform(self, X)

	Transform X to a cluster-distance space.







	
fit(self, X, y=None)

	Compute k-means clustering and estimate optimal number of clusters.


	Parameters

	
	Xarray-like or sparse matrix, shape=(n_samples, n_features)

	Training instances to cluster. It must be noted that the data
will be converted to C ordering, which will cause a memory
copy if the given data is not C-contiguous.



	yIgnored

	not used, present here for API consistency by convention.














	
fit_predict(self, X, y=None)

	Performs clustering on X and returns cluster labels.


	Parameters

	
	Xndarray, shape (n_samples, n_features)

	Input data.







	Returns

	
	yndarray, shape (n_samples,)

	cluster labels














	
fit_transform(self, X, y=None, **fit_params)

	Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.


	Parameters

	
	Xnumpy array of shape [n_samples, n_features]

	Training set.



	ynumpy array of shape [n_samples]

	Target values.







	Returns

	
	X_newnumpy array of shape [n_samples, n_features_new]

	Transformed array.














	
get_params(self, deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepboolean, optional

	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any

	Parameter names mapped to their values.














	
predict(self, X)

	Predict the closest cluster each sample in X belongs to.

In the vector quantization literature, cluster_centers_ is called
the code book and each value returned by predict is the index of
the closest code in the code book.


	Parameters

	
	X{array-like, sparse matrix}, shape = [n_samples, n_features]

	New data to predict.







	Returns

	
	labelsarray, shape [n_samples,]

	Index of the cluster each sample belongs to.














	
set_params(self, **params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Returns

	
	self

	












	
transform(self, X)

	Transform X to a cluster-distance space.

In the new space, each dimension is the distance to the cluster
centers.  Note that even if X is sparse, the array returned by
transform will typically be dense.


	Parameters

	
	X{array-like, sparse matrix}, shape = [n_samples, n_features]

	New data to transform.







	Returns

	
	X_newarray, shape [n_samples, k]

	X transformed in the new space.


















	
class divik.cluster.DiviK(gap_trials: int = 10, distance_percentile: float = 99.0, max_iter: int = 100, distance: str = 'correlation', minimal_size: int = None, rejection_size: int = None, rejection_percentage: float = None, minimal_features_percentage: float = 0.01, features_percentage: float = 0.05, fast_kmeans_iter: int = 10, k_max: int = 10, normalize_rows: bool = None, use_logfilters: bool = False, filter_type='gmm', keep_outliers=False, n_jobs: int = None, random_seed: int = 0, verbose: bool = False)

	DiviK clustering


	Parameters

	
	gap_trials: int, optional, default: 10

	The number of random dataset draws to estimate the GAP index for the
clustering quality assessment.



	distance_percentile: float, optional, default: 99.0

	The percentile of the distance between points and their closest
centroid. 100.0 would simply select the furthest point from all the
centroids found already. Lower value provides better robustness against
outliers. Too low value reduces the capability to detect centroid
candidates during initialization.



	max_iter: int, optional, default: 100

	Maximum number of iterations of the k-means algorithm for a single run.



	distance: str, optional, default: ‘correlation’

	The distance metric between points, centroids and for GAP index
estimation. One of the distances supported by scipy package.



	minimal_size: int, optional, default: None

	The minimum size of the region (the number of observations) to be
considered for any further divisions. When left None, defaults to
0.1% of the training dataset size.



	rejection_size: int, optional, default: None

	Size under which split will be rejected - if a cluster appears in the
split that is below rejection_size, the split is considered improper
and discarded. This may be useful for some domains (like there is no
justification for a 3-cells cluster in biological data). By default,
no segmentation is discarded, as careful post-processing provides the
same advantage.



	rejection_percentage: float, optional, default: None

	An alternative to rejection_size, with the same behavior, but this
parameter is related to the training data size percentage. By default,
no segmentation is discarded.



	minimal_features_percentage: float, optional, default: 0.01

	The minimal percentage of features that must be preserved after
GMM-based feature selection. By default at least 1% of features is
preserved in the filtration process.



	features_percentage: float, optional, default: 0.05

	The target percentage of features that are used by fallback percentage
filter for ‘outlier’ filter.



	fast_kmeans_iter: int, optional, default: 10

	Maximum number of iterations of the k-means algorithm for a single run
during computation of the GAP index. Decreased with respect to the
max_iter, as GAP index requires multiple segmentations to be evaluated.



	k_max: int, optional, default: 10

	Maximum number of clusters evaluated during the auto-tuning process.
From 1 up to k_max clusters are tested per evaluation.



	normalize_rows: bool, optional, default: None

	Whether to normalize each row of the data to the norm of 1. By default,
it normalizes rows for correlation metric, does no normalization
otherwise.



	use_logfilters: bool, optional, default: False

	Whether to compute logarithm of feature characteristic instead of the
characteristic itself. This may improve feature filtering performance,
depending on the distribution of features, however all the
characteristics (mean, variance) have to be positive for that -
filtering will fail otherwise. This is useful for specific cases in
biology where the distribution of data may actually require this option
for any efficient filtering.



	filter_type: {‘gmm’, ‘outlier’, ‘auto’, ‘none’}, default: ‘gmm’

	
	‘gmm’ - usual Gaussian Mixture Model-based filtering, useful for high




dimensional cases
- ‘outlier’ - robust outlier detection-based filtering, useful for low
dimensional cases. In the case of no outliers, percentage-based
filtering is applied.
- ‘auto’ - automatically selects between ‘gmm’ and ‘outlier’ based on
the dimensionality. When more than 250 features are present, ‘gmm’
is chosen.
- ‘none’ - feature selection is disabled



	keep_outliers: bool, optional, default: False

	When filter_type is ‘outlier’, this will switch feature selection
to outliers-preserving mode (inlier features are removed).



	n_jobs: int, optional, default: None

	The number of jobs to use for the computation. This works by computing
each of the GAP index evaluations in parallel and by making predictions
in parallel.



	random_seed: int, optional, default: 0

	Seed to initialize the random number generator.



	verbose: bool, optional, default: False

	Whether to report the progress of the computations.









Examples

>>> from divik.cluster import DiviK
>>> from sklearn.datasets import make_blobs
>>> X, _ = make_blobs(n_samples=200, n_features=100, centers=20,
...                   random_state=42)
>>> divik = DiviK(distance='euclidean').fit(X)
>>> divik.labels_
array([1, 1, 1, 0, ..., 0, 0], dtype=int32)
>>> divik.predict([[0, ..., 0], [12, ..., 3]])
array([1, 0], dtype=int32)
>>> divik.cluster_centers_
array([[10., ...,  2.],
       ...,
       [ 1, ...,  2.]])






	Attributes

	
	result_: divik.DivikResult

	Hierarchical structure describing all the consecutive segmentations.



	labels_:

	Labels of each point



	centroids_: array, [n_clusters, n_features]

	Coordinates of cluster centers. If the algorithm stops before fully
converging, these will not be consistent with labels_. Also, the
distance between points and respective centroids must be captured
in appropriate features subspace. This is realized by the transform
method.



	filters_: array, [n_clusters, n_features]

	Filters that were applied to the feature space on the level that was
the final segmentation for a subset.



	depth_: int

	The number of hierarchy levels in the segmentation.



	n_clusters_: int

	The final number of clusters in the segmentation, on the tree leaf
level.



	paths_: Dict[int, Tuple[int]]

	Describes how the cluster number corresponds to the path in the tree.
Element of the tuple indicates the sub-segment number on each tree
level.



	reverse_paths_: Dict[Tuple[int], int]

	Describes how the path in the tree corresponds to the cluster number.
For more details see paths_.









Methods







	fit(self, X[, y])

	Compute DiviK clustering.



	fit_predict(self, X[, y])

	Compute cluster centers and predict cluster index for each sample.



	fit_transform(self, X[, y])

	Compute clustering and transform X to cluster-distance space.



	get_params(self[, deep])

	Get parameters for this estimator.



	predict(self, X)

	Predict the closest cluster each sample in X belongs to.



	set_params(self, \*\*params)

	Set the parameters of this estimator.



	transform(self, X)

	Transform X to a cluster-distance space.







	
fit(self, X, y=None)

	Compute DiviK clustering.


	Parameters

	
	Xarray-like or sparse matrix, shape=(n_samples, n_features)

	Training instances to cluster. It must be noted that the data
will be converted to C ordering, which will cause a memory
copy if the given data is not C-contiguous.



	yIgnored

	not used, present here for API consistency by convention.














	
fit_predict(self, X, y=None)

	Compute cluster centers and predict cluster index for each sample.

Convenience method; equivalent to calling fit(X) followed by
predict(X).


	Parameters

	
	X{array-like, sparse matrix}, shape = [n_samples, n_features]

	New data to transform.



	yIgnored

	not used, present here for API consistency by convention.







	Returns

	
	labelsarray, shape [n_samples,]

	Index of the cluster each sample belongs to.














	
fit_transform(self, X, y=None, **fit_params)

	Compute clustering and transform X to cluster-distance space.

Equivalent to fit(X).transform(X), but more efficiently implemented.


	Parameters

	
	X{array-like, sparse matrix}, shape = [n_samples, n_features]

	New data to transform.



	yIgnored

	not used, present here for API consistency by convention.







	Returns

	
	X_newarray, shape [n_samples, self.n_clusters_]

	X transformed in the new space.














	
get_params(self, deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepboolean, optional

	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any

	Parameter names mapped to their values.














	
predict(self, X)

	Predict the closest cluster each sample in X belongs to.

In the vector quantization literature, cluster_centers_ is called
the code book and each value returned by predict is the index of
the closest code in the code book.


	Parameters

	
	X{array-like, sparse matrix}, shape = [n_samples, n_features]

	New data to predict.







	Returns

	
	labelsarray, shape [n_samples,]

	Index of the cluster each sample belongs to.














	
set_params(self, **params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Returns

	
	self

	












	
transform(self, X)

	Transform X to a cluster-distance space.

In the new space, each dimension is the distance to the cluster
centers.  Note that even if X is sparse, the array returned by
transform will typically be dense.


	Parameters

	
	X{array-like, sparse matrix}, shape = [n_samples, n_features]

	New data to transform.







	Returns

	
	X_newarray, shape [n_samples, self.n_clusters_]

	X transformed in the new space.


















	
class divik.cluster.KMeans(n_clusters: int, distance: str = 'euclidean', init: str = 'percentile', percentile: float = 95.0, max_iter: int = 100, normalize_rows: bool = False)

	K-Means clustering


	Parameters

	
	n_clustersint

	The number of clusters to form as well as the number of
centroids to generate.



	distancestr, optional, default: ‘euclidean’

	Distance measure. One of the distances supported by scipy package.



	init{‘percentile’ or ‘extreme’}

	Method for initialization, defaults to ‘percentile’:

‘percentile’ : selects initial cluster centers for k-mean
clustering starting from specified percentile of distance to
already selected clusters

‘extreme’: selects initial cluster centers for k-mean
clustering starting from the furthest points to already specified
clusters



	percentilefloat, default: 95.0

	Specifies the starting percentile for ‘percentile’ initialization.
Must be within range [0.0, 100.0]. At 100.0 it is equivalent to
‘extreme’ initialization.



	max_iterint, default: 100

	Maximum number of iterations of the k-means algorithm for a
single run.



	normalize_rowsbool, default: False

	If True, rows are translated to mean of 0.0 and scaled to norm of 1.0.







	Attributes

	
	cluster_centers_array, [n_clusters, n_features]

	Coordinates of cluster centers.



	labels_ :

	Labels of each point









Methods







	fit(self, X[, y])

	Compute k-means clustering.



	fit_predict(self, X[, y])

	Performs clustering on X and returns cluster labels.



	fit_transform(self, X[, y])

	Fit to data, then transform it.



	get_params(self[, deep])

	Get parameters for this estimator.



	predict(self, X)

	Predict the closest cluster each sample in X belongs to.



	set_params(self, \*\*params)

	Set the parameters of this estimator.



	transform(self, X)

	Transform X to a cluster-distance space.







	
fit(self, X, y=None)

	Compute k-means clustering.


	Parameters

	
	Xarray-like or sparse matrix, shape=(n_samples, n_features)

	Training instances to cluster. It must be noted that the data
will be converted to C ordering, which will cause a memory
copy if the given data is not C-contiguous.



	yIgnored

	not used, present here for API consistency by convention.














	
fit_predict(self, X, y=None)

	Performs clustering on X and returns cluster labels.


	Parameters

	
	Xndarray, shape (n_samples, n_features)

	Input data.







	Returns

	
	yndarray, shape (n_samples,)

	cluster labels














	
fit_transform(self, X, y=None, **fit_params)

	Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.


	Parameters

	
	Xnumpy array of shape [n_samples, n_features]

	Training set.



	ynumpy array of shape [n_samples]

	Target values.







	Returns

	
	X_newnumpy array of shape [n_samples, n_features_new]

	Transformed array.














	
get_params(self, deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepboolean, optional

	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any

	Parameter names mapped to their values.














	
predict(self, X)

	Predict the closest cluster each sample in X belongs to.

In the vector quantization literature, cluster_centers_ is called
the code book and each value returned by predict is the index of
the closest code in the code book.


	Parameters

	
	X{array-like, sparse matrix}, shape = [n_samples, n_features]

	New data to predict.







	Returns

	
	labelsarray, shape [n_samples,]

	Index of the cluster each sample belongs to.














	
set_params(self, **params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Returns

	
	self

	












	
transform(self, X)

	Transform X to a cluster-distance space.

In the new space, each dimension is the distance to the cluster
centers.  Note that even if X is sparse, the array returned by
transform will typically be dense.


	Parameters

	
	X{array-like, sparse matrix}, shape = [n_samples, n_features]

	New data to transform.







	Returns

	
	X_newarray, shape [n_samples, k]

	X transformed in the new space.





















          

      

      

    

  

    
      
          
            
  
feature_selection module

Unsupervised feature selection methods


	
class divik.feature_selection.StatSelectorMixin

	Transformer mixin that performs feature selection given a support mask

This mixin provides a feature selector implementation with transform and
inverse_transform functionality given that selected_ is specified
during fit.

Additionally, provides a _to_characteristics and _to_raw implementations
given stat, optionally use_log and preserve_high.

Methods







	fit_transform(self, X[, y])

	Fit to data, then transform it.



	get_support(self[, indices])

	Get a mask, or integer index, of the features selected



	inverse_transform(self, X)

	Reverse the transformation operation



	transform(self, X)

	Reduce X to the selected features.







	
fit_transform(self, X, y=None, **fit_params)

	Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.


	Parameters

	
	Xnumpy array of shape [n_samples, n_features]

	Training set.



	ynumpy array of shape [n_samples]

	Target values.







	Returns

	
	X_newnumpy array of shape [n_samples, n_features_new]

	Transformed array.














	
get_support(self, indices=False)

	Get a mask, or integer index, of the features selected


	Parameters

	
	indicesboolean (default False)

	If True, the return value will be an array of integers, rather
than a boolean mask.







	Returns

	
	supportarray

	An index that selects the retained features from a feature vector.
If indices is False, this is a boolean array of shape
[# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is
True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.














	
inverse_transform(self, X)

	Reverse the transformation operation


	Parameters

	
	Xarray of shape [n_samples, n_selected_features]

	The input samples.







	Returns

	
	X_rarray of shape [n_samples, n_original_features]

	X with columns of zeros inserted where features would have
been removed by transform.














	
transform(self, X)

	Reduce X to the selected features.


	Parameters

	
	Xarray of shape [n_samples, n_features]

	The input samples.







	Returns

	
	X_rarray of shape [n_samples, n_selected_features]

	The input samples with only the selected features.


















	
class divik.feature_selection.NoSelector

	Dummy selector to use when no selection is supposed to be made.

Methods







	fit(self, X[, y])

	Pass data forward



	fit_transform(self, X[, y])

	Fit to data, then transform it.



	get_params(self[, deep])

	Get parameters for this estimator.



	get_support(self[, indices])

	Get a mask, or integer index, of the features selected



	inverse_transform(self, X)

	Reverse the transformation operation



	set_params(self, \*\*params)

	Set the parameters of this estimator.



	transform(self, X)

	Reduce X to the selected features.







	
fit(self, X, y=None)

	Pass data forward


	Parameters

	
	X{array-like, sparse matrix}, shape (n_samples, n_features)

	Sample vectors to pass.



	yany

	Ignored. This parameter exists only for compatibility with
sklearn.pipeline.Pipeline.







	Returns

	
	self

	












	
fit_transform(self, X, y=None, **fit_params)

	Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.


	Parameters

	
	Xnumpy array of shape [n_samples, n_features]

	Training set.



	ynumpy array of shape [n_samples]

	Target values.







	Returns

	
	X_newnumpy array of shape [n_samples, n_features_new]

	Transformed array.














	
get_params(self, deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepboolean, optional

	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any

	Parameter names mapped to their values.














	
get_support(self, indices=False)

	Get a mask, or integer index, of the features selected


	Parameters

	
	indicesboolean (default False)

	If True, the return value will be an array of integers, rather
than a boolean mask.







	Returns

	
	supportarray

	An index that selects the retained features from a feature vector.
If indices is False, this is a boolean array of shape
[# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is
True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.














	
inverse_transform(self, X)

	Reverse the transformation operation


	Parameters

	
	Xarray of shape [n_samples, n_selected_features]

	The input samples.







	Returns

	
	X_rarray of shape [n_samples, n_original_features]

	X with columns of zeros inserted where features would have
been removed by transform.














	
set_params(self, **params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Returns

	
	self

	












	
transform(self, X)

	Reduce X to the selected features.


	Parameters

	
	Xarray of shape [n_samples, n_features]

	The input samples.







	Returns

	
	X_rarray of shape [n_samples, n_selected_features]

	The input samples with only the selected features.


















	
class divik.feature_selection.GMMSelector(stat: str, use_log: bool = False, n_candidates: int = None, min_features: int = 1, min_features_rate: float = 0.0, preserve_high: bool = True, max_components: int = 10)

	Feature selector that removes low- or high- mean or variance features

Gaussian Mixture Modeling is applied to the features’ characteristics
and components are obtained. Crossing points of the components are
considered candidate thresholds. Out of these up to n_candidates
components are removed in such a way that at least min_features or
min_features_rate features are retained.

This feature selection algorithm looks only at the features (X), not the
desired outputs (y), and can thus be used for unsupervised learning.


	Parameters

	
	stat: {‘mean’, ‘var’}

	Kind of statistic to be computed out of the feature.



	use_log: bool, optional, default: False

	Whether to use the logarithm of feature characteristic instead of the
characteristic itself. This may improve feature filtering performance,
depending on the distribution of features, however all the
characteristics (mean, variance) have to be positive for that -
filtering will fail otherwise. This is useful for specific cases in
biology where the distribution of data may actually require this option
for any efficient filtering.



	n_candidates: int, optional, default: None

	How many candidate thresholds to use at most. 0 preserves all the
features (all candidate thresholds are discarded), None allows to
remove all but one component (all candidate thresholds are retained).
Negative value means to discard up to all but -n_candidates
candidates, e.g. -1 will retain at least two components (one
candidate threshold is removed).



	min_features: int, optional, default: 1

	How many features must be preserved. Candidate thresholds are tested
against this value, and if they retain less features, less conservative
thresholds is selected.



	min_features_rate: float, optional, default: 0.0

	Similar to min_features but relative to the input data features
number.



	preserve_high: bool, optional, default: True

	Whether to preserve the high-characteristic features or
low-characteristic ones.



	max_components: int, optional, default: 10

	The maximum number of components used in the GMM decomposition.









Examples

>>> import numpy as np
>>> import divik.feature_selection as fs
>>> np.random.seed(42)
>>> labels = np.concatenate([30 * [0] + 20 * [1] + 30 * [2] + 40 * [3]])
>>> data = labels * 5 + np.random.randn(*labels.shape)
>>> fs.GMMSelector('mean').fit_transform(data)
array([[14.78032811 15.35711257 ... 15.75193303]])
>>> fs.GMMSelector('mean', preserve_high=False).fit_transform(data)
array([[ 0.49671415 -0.1382643  ... -0.29169375]])
>>> fs.GMMSelector('mean', n_discard=-1).fit_transform(data)
array([[10.32408397  9.61491772 ... 15.75193303]])






	Attributes

	
	vals_: array, shape (n_features,)

	Computed characteristic of each feature.



	threshold_: float

	Threshold value to filter the features by the characteristic.



	raw_threshold_: float

	Threshold value mapped back to characteristic space (no logarithm, etc.)



	selected_: array, shape (n_features,)

	Vector of binary selections of the informative features.









Methods







	fit(self, X[, y])

	Learn data-driven feature thresholds from X.



	fit_transform(self, X[, y])

	Fit to data, then transform it.



	get_params(self[, deep])

	Get parameters for this estimator.



	get_support(self[, indices])

	Get a mask, or integer index, of the features selected



	inverse_transform(self, X)

	Reverse the transformation operation



	set_params(self, \*\*params)

	Set the parameters of this estimator.



	transform(self, X)

	Reduce X to the selected features.







	
fit(self, X, y=None)

	Learn data-driven feature thresholds from X.


	Parameters

	
	X{array-like, sparse matrix}, shape (n_samples, n_features)

	Sample vectors from which to compute feature characteristic.



	yany

	Ignored. This parameter exists only for compatibility with
sklearn.pipeline.Pipeline.







	Returns

	
	self

	












	
fit_transform(self, X, y=None, **fit_params)

	Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.


	Parameters

	
	Xnumpy array of shape [n_samples, n_features]

	Training set.



	ynumpy array of shape [n_samples]

	Target values.







	Returns

	
	X_newnumpy array of shape [n_samples, n_features_new]

	Transformed array.














	
get_params(self, deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepboolean, optional

	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any

	Parameter names mapped to their values.














	
get_support(self, indices=False)

	Get a mask, or integer index, of the features selected


	Parameters

	
	indicesboolean (default False)

	If True, the return value will be an array of integers, rather
than a boolean mask.







	Returns

	
	supportarray

	An index that selects the retained features from a feature vector.
If indices is False, this is a boolean array of shape
[# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is
True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.














	
inverse_transform(self, X)

	Reverse the transformation operation


	Parameters

	
	Xarray of shape [n_samples, n_selected_features]

	The input samples.







	Returns

	
	X_rarray of shape [n_samples, n_original_features]

	X with columns of zeros inserted where features would have
been removed by transform.














	
set_params(self, **params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Returns

	
	self

	












	
transform(self, X)

	Reduce X to the selected features.


	Parameters

	
	Xarray of shape [n_samples, n_features]

	The input samples.







	Returns

	
	X_rarray of shape [n_samples, n_selected_features]

	The input samples with only the selected features.


















	
divik.feature_selection.huberta_outliers(v)

	M. Huberta, E.Vandervierenb (2008) An adjusted boxplot for skewed
distributions, Computational Statistics and Data Analysis 52 (2008)
5186–5201


	Parameters

	
	v: array-like

	An array to filter outlier from.







	Returns

	
	Binary vector indicating all the outliers.

	












	
class divik.feature_selection.OutlierSelector(stat: str, use_log: bool = False, keep_outliers: bool = False)

	Feature selector that removes outlier features w.r.t. mean or variance

Huberta’s outlier detection is applied to the features’ characteristics
and the outlying features are removed.

This feature selection algorithm looks only at the features (X), not the
desired outputs (y), and can thus be used for unsupervised learning.


	Parameters

	
	stat: {‘mean’, ‘var’}

	Kind of statistic to be computed out of the feature.



	use_log: bool, optional, default: False

	Whether to use the logarithm of feature characteristic instead of the
characteristic itself. This may improve feature filtering performance,
depending on the distribution of features, however all the
characteristics (mean, variance) have to be positive for that -
filtering will fail otherwise. This is useful for specific cases in
biology where the distribution of data may actually require this option
for any efficient filtering.



	keep_outliers: bool, optional, default: False

	When True, keeps outliers instead of inlier features.







	Attributes

	
	vals_: array, shape (n_features,)

	Computed characteristic of each feature.



	selected_: array, shape (n_features,)

	Vector of binary selections of the informative features.









Methods







	fit(self, X[, y])

	Learn data-driven feature thresholds from X.



	fit_transform(self, X[, y])

	Fit to data, then transform it.



	get_params(self[, deep])

	Get parameters for this estimator.



	get_support(self[, indices])

	Get a mask, or integer index, of the features selected



	inverse_transform(self, X)

	Reverse the transformation operation



	set_params(self, \*\*params)

	Set the parameters of this estimator.



	transform(self, X)

	Reduce X to the selected features.







	
fit(self, X, y=None)

	Learn data-driven feature thresholds from X.


	Parameters

	
	X{array-like, sparse matrix}, shape (n_samples, n_features)

	Sample vectors from which to compute feature characteristic.



	yany

	Ignored. This parameter exists only for compatibility with
sklearn.pipeline.Pipeline.







	Returns

	
	self

	












	
fit_transform(self, X, y=None, **fit_params)

	Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.


	Parameters

	
	Xnumpy array of shape [n_samples, n_features]

	Training set.



	ynumpy array of shape [n_samples]

	Target values.







	Returns

	
	X_newnumpy array of shape [n_samples, n_features_new]

	Transformed array.














	
get_params(self, deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepboolean, optional

	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any

	Parameter names mapped to their values.














	
get_support(self, indices=False)

	Get a mask, or integer index, of the features selected


	Parameters

	
	indicesboolean (default False)

	If True, the return value will be an array of integers, rather
than a boolean mask.







	Returns

	
	supportarray

	An index that selects the retained features from a feature vector.
If indices is False, this is a boolean array of shape
[# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is
True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.














	
inverse_transform(self, X)

	Reverse the transformation operation


	Parameters

	
	Xarray of shape [n_samples, n_selected_features]

	The input samples.







	Returns

	
	X_rarray of shape [n_samples, n_original_features]

	X with columns of zeros inserted where features would have
been removed by transform.














	
set_params(self, **params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Returns

	
	self

	












	
transform(self, X)

	Reduce X to the selected features.


	Parameters

	
	Xarray of shape [n_samples, n_features]

	The input samples.







	Returns

	
	X_rarray of shape [n_samples, n_selected_features]

	The input samples with only the selected features.


















	
class divik.feature_selection.PercentageSelector(stat: str, use_log: bool = False, keep_top: bool = True, p: float = 0.2)

	Feature selector that removes / preserves top some percent of features

This feature selection algorithm looks only at the features (X), not the
desired outputs (y), and can thus be used for unsupervised learning.


	Parameters

	
	stat: {‘mean’, ‘var’}

	Kind of statistic to be computed out of the feature.



	use_log: bool, optional, default: False

	Whether to use the logarithm of feature characteristic instead of the
characteristic itself. This may improve feature filtering performance,
depending on the distribution of features, however all the
characteristics (mean, variance) have to be positive for that -
filtering will fail otherwise. This is useful for specific cases in
biology where the distribution of data may actually require this option
for any efficient filtering.



	keep_top: bool, optional, default: True

	When True, keeps features with highest value of the characteristic.



	p: float, optional, default: 0.2

	Rate of features to keep.







	Attributes

	
	vals_: array, shape (n_features,)

	Computed characteristic of each feature.



	threshold_: float

	Value of the threshold used for filtering



	selected_: array, shape (n_features,)

	Vector of binary selections of the informative features.









Methods







	fit(self, X[, y])

	Learn data-driven feature thresholds from X.



	fit_transform(self, X[, y])

	Fit to data, then transform it.



	get_params(self[, deep])

	Get parameters for this estimator.



	get_support(self[, indices])

	Get a mask, or integer index, of the features selected



	inverse_transform(self, X)

	Reverse the transformation operation



	set_params(self, \*\*params)

	Set the parameters of this estimator.



	transform(self, X)

	Reduce X to the selected features.







	
fit(self, X, y=None)

	Learn data-driven feature thresholds from X.


	Parameters

	
	X{array-like, sparse matrix}, shape (n_samples, n_features)

	Sample vectors from which to compute feature characteristic.



	yany

	Ignored. This parameter exists only for compatibility with
sklearn.pipeline.Pipeline.







	Returns

	
	self

	












	
fit_transform(self, X, y=None, **fit_params)

	Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.


	Parameters

	
	Xnumpy array of shape [n_samples, n_features]

	Training set.



	ynumpy array of shape [n_samples]

	Target values.







	Returns

	
	X_newnumpy array of shape [n_samples, n_features_new]

	Transformed array.














	
get_params(self, deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepboolean, optional

	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any

	Parameter names mapped to their values.














	
get_support(self, indices=False)

	Get a mask, or integer index, of the features selected


	Parameters

	
	indicesboolean (default False)

	If True, the return value will be an array of integers, rather
than a boolean mask.







	Returns

	
	supportarray

	An index that selects the retained features from a feature vector.
If indices is False, this is a boolean array of shape
[# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is
True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.














	
inverse_transform(self, X)

	Reverse the transformation operation


	Parameters

	
	Xarray of shape [n_samples, n_selected_features]

	The input samples.







	Returns

	
	X_rarray of shape [n_samples, n_original_features]

	X with columns of zeros inserted where features would have
been removed by transform.














	
set_params(self, **params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Returns

	
	self

	












	
transform(self, X)

	Reduce X to the selected features.


	Parameters

	
	Xarray of shape [n_samples, n_features]

	The input samples.







	Returns

	
	X_rarray of shape [n_samples, n_selected_features]

	The input samples with only the selected features.


















	
class divik.feature_selection.HighAbundanceAndVarianceSelector(use_log: bool = False, min_features: int = 1, min_features_rate: float = 0.0, max_components: int = 10)

	Feature selector that removes low-mean and low-variance features

Exercises GMMSelector to filter out the low-abundance noise features
and select high-variance informative features.

This feature selection algorithm looks only at the features (X), not the
desired outputs (y), and can thus be used for unsupervised learning.


	Parameters

	
	use_log: bool, optional, default: False

	Whether to use the logarithm of feature characteristic instead of the
characteristic itself. This may improve feature filtering performance,
depending on the distribution of features, however all the
characteristics (mean, variance) have to be positive for that -
filtering will fail otherwise. This is useful for specific cases in
biology where the distribution of data may actually require this option
for any efficient filtering.



	min_features: int, optional, default: 1

	How many features must be preserved.



	min_features_rate: float, optional, default: 0.0

	Similar to min_features but relative to the input data features
number.



	max_components: int, optional, default: 10

	The maximum number of components used in the GMM decomposition.









Examples

>>> import numpy as np
>>> import divik.feature_selection as fs
>>> np.random.seed(42)
>>> # Data in this case must be carefully crafted
>>> labels = np.concatenate([30 * [0] + 20 * [1] + 30 * [2] + 40 * [3]])
>>> data = np.vstack(100 * [labels * 10.])
>>> data += np.random.randn(*data.shape)
>>> sub = data[:, :-40]
>>> sub += 5 * np.random.randn(*sub.shape)
>>> # Label 0 has low abundance but high variance
>>> # Label 3 has low variance but high abundance
>>> # Label 1 and 2 has not-lowest abundance and high variance
>>> selector = fs.HighAbundanceAndVarianceSelector().fit(data)
>>> selector.transform(labels.reshape(1,-1))
array([[1 1 1 1 1 ...2 2 2]])






	Attributes

	
	abundance_selector_: GMMSelector

	Selector used to filter out the noise component.



	variance_selector_: GMMSelector

	Selector used to filter out the non-informative features.



	selected_: array, shape (n_features,)

	Vector of binary selections of the informative features.









Methods







	fit(self, X[, y])

	Learn data-driven feature thresholds from X.



	fit_transform(self, X[, y])

	Fit to data, then transform it.



	get_params(self[, deep])

	Get parameters for this estimator.



	get_support(self[, indices])

	Get a mask, or integer index, of the features selected



	inverse_transform(self, X)

	Reverse the transformation operation



	set_params(self, \*\*params)

	Set the parameters of this estimator.



	transform(self, X)

	Reduce X to the selected features.







	
fit(self, X, y=None)

	Learn data-driven feature thresholds from X.


	Parameters

	
	X{array-like, sparse matrix}, shape (n_samples, n_features)

	Sample vectors from which to compute feature characteristic.



	yany

	Ignored. This parameter exists only for compatibility with
sklearn.pipeline.Pipeline.







	Returns

	
	self

	












	
fit_transform(self, X, y=None, **fit_params)

	Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.


	Parameters

	
	Xnumpy array of shape [n_samples, n_features]

	Training set.



	ynumpy array of shape [n_samples]

	Target values.







	Returns

	
	X_newnumpy array of shape [n_samples, n_features_new]

	Transformed array.














	
get_params(self, deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepboolean, optional

	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any

	Parameter names mapped to their values.














	
get_support(self, indices=False)

	Get a mask, or integer index, of the features selected


	Parameters

	
	indicesboolean (default False)

	If True, the return value will be an array of integers, rather
than a boolean mask.







	Returns

	
	supportarray

	An index that selects the retained features from a feature vector.
If indices is False, this is a boolean array of shape
[# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is
True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.














	
inverse_transform(self, X)

	Reverse the transformation operation


	Parameters

	
	Xarray of shape [n_samples, n_selected_features]

	The input samples.







	Returns

	
	X_rarray of shape [n_samples, n_original_features]

	X with columns of zeros inserted where features would have
been removed by transform.














	
set_params(self, **params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Returns

	
	self

	












	
transform(self, X)

	Reduce X to the selected features.


	Parameters

	
	Xarray of shape [n_samples, n_features]

	The input samples.







	Returns

	
	X_rarray of shape [n_samples, n_selected_features]

	The input samples with only the selected features.


















	
class divik.feature_selection.OutlierAbundanceAndVarianceSelector(use_log: bool = False, min_features_rate: float = 0.01, p: float = 0.2)

	Methods







	fit(self, X[, y])

	Learn data-driven feature thresholds from X.



	fit_transform(self, X[, y])

	Fit to data, then transform it.



	get_params(self[, deep])

	Get parameters for this estimator.



	get_support(self[, indices])

	Get a mask, or integer index, of the features selected



	inverse_transform(self, X)

	Reverse the transformation operation



	set_params(self, \*\*params)

	Set the parameters of this estimator.



	transform(self, X)

	Reduce X to the selected features.







	
fit(self, X, y=None)

	Learn data-driven feature thresholds from X.


	Parameters

	
	X{array-like, sparse matrix}, shape (n_samples, n_features)

	Sample vectors from which to compute feature characteristic.



	yany

	Ignored. This parameter exists only for compatibility with
sklearn.pipeline.Pipeline.







	Returns

	
	self

	












	
fit_transform(self, X, y=None, **fit_params)

	Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.


	Parameters

	
	Xnumpy array of shape [n_samples, n_features]

	Training set.



	ynumpy array of shape [n_samples]

	Target values.







	Returns

	
	X_newnumpy array of shape [n_samples, n_features_new]

	Transformed array.














	
get_params(self, deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepboolean, optional

	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any

	Parameter names mapped to their values.














	
get_support(self, indices=False)

	Get a mask, or integer index, of the features selected


	Parameters

	
	indicesboolean (default False)

	If True, the return value will be an array of integers, rather
than a boolean mask.







	Returns

	
	supportarray

	An index that selects the retained features from a feature vector.
If indices is False, this is a boolean array of shape
[# input features], in which an element is True iff its
corresponding feature is selected for retention. If indices is
True, this is an integer array of shape [# output features] whose
values are indices into the input feature vector.














	
inverse_transform(self, X)

	Reverse the transformation operation


	Parameters

	
	Xarray of shape [n_samples, n_selected_features]

	The input samples.







	Returns

	
	X_rarray of shape [n_samples, n_original_features]

	X with columns of zeros inserted where features would have
been removed by transform.














	
set_params(self, **params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Returns

	
	self

	












	
transform(self, X)

	Reduce X to the selected features.


	Parameters

	
	Xarray of shape [n_samples, n_features]

	The input samples.







	Returns

	
	X_rarray of shape [n_samples, n_selected_features]

	The input samples with only the selected features.
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feature_extraction module


	
class divik.feature_extraction.LocallyAdjustedRbfSpectralEmbedding(distance: str = 'euclidean', n_components=2, random_state=None, eigen_solver: str = None, n_neighbors: int = None, n_jobs: int = 1)

	Spectral embedding for non-linear dimensionality reduction.

Forms an affinity matrix given by the specified function and
applies spectral decomposition to the corresponding graph laplacian.
The resulting transformation is given by the value of the
eigenvectors for each data point.

Note : Laplacian Eigenmaps is the actual algorithm implemented here.


	Parameters

	
	distance{‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘cityblock’,

	

	‘correlation’, ‘cosine’, ‘dice’, ‘euclidean’, ‘hamming’, ‘jaccard’,

	

	‘kulsinski’, ‘mahalanobis’, ‘atching’, ‘minkowski’, ‘rogerstanimoto’,

	

	‘russellrao’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’}

	Distance measure, defaults to ‘euclidean’. These are the distances
supported by scipy package.



	n_componentsinteger, default: 2

	The dimension of the projected subspace.



	random_stateint, RandomState instance or None, optional, default: None

	A pseudo random number generator used for the initialization of the
lobpcg eigenvectors.  If int, random_state is the seed used by the
random number generator; If RandomState instance, random_state is the
random number generator; If None, the random number generator is the
RandomState instance used by np.random. Used when solver ==
‘amg’.



	eigen_solver{None, ‘arpack’, ‘lobpcg’, or ‘amg’}

	The eigenvalue decomposition strategy to use. AMG requires pyamg
to be installed. It can be faster on very large, sparse problems,
but may also lead to instabilities.



	n_neighborsint, default

	Number of nearest neighbors for nearest_neighbors graph building.



	n_jobsint, optional (default = 1)

	The number of parallel jobs to run.
If -1, then the number of jobs is set to the number of CPU cores.
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	Attributes

	
	embedding_array, shape = (n_samples, n_components)

	Spectral embedding of the training matrix.









Methods







	fit(self, X[, y])

	Fit the model from data in X.



	fit_transform(self, X[, y])

	Fit the model from data in X and transform X.



	get_params(self[, deep])

	Get parameters for this estimator.



	save(self, destination)

	Save embedding to a directory



	set_params(self, \*\*params)

	Set the parameters of this estimator.







	
fit(self, X, y=None)

	Fit the model from data in X.


	Parameters

	
	Xarray-like, shape (n_samples, n_features)

	Training vector, where n_samples is the number of samples
and n_features is the number of features.



	Y: Ignored.

	





	Returns

	
	selfobject

	Returns the instance itself.














	
fit_transform(self, X, y=None)

	Fit the model from data in X and transform X.


	Parameters

	
	Xarray-like, shape (n_samples, n_features)

	Training vector, where n_samples is the number of samples
and n_features is the number of features.



	Y: Ignored.

	





	Returns

	
	X_newarray-like, shape (n_samples, n_components)

	












	
get_params(self, deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepboolean, optional

	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any

	Parameter names mapped to their values.














	
save(self, destination:str)

	Save embedding to a directory


	Parameters

	
	destinationstr

	Directory to save the embedding.














	
set_params(self, **params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Returns

	
	self
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